Number of Subarray of an Array Non Continuous
Count Subarrays with Consecutive elements differing by 1
Given an array arr[] of N integers. The task is to count the total number of subarrays of the given array such that the difference between the consecutive elements in the subarrays is one. That is, for any indexin the subarrays, arr[i+1] – arr[i] = 1.
Note: Do not consider subarrays with a single element.
Examples:
Input : arr[] = {1, 2, 3} Output : 3 The subarrays are {1, 2}. {2, 3} and {1, 2, 3} Input : arr[] = {1, 2, 3, 5, 6, 7} Output : 6
Naive Approach: A simple approach is to run two nested loops and check every subarray and calculate the count of subarrays with consecutive elements differing by 1.
Efficient Approach: An efficient approach is to observe that in an array of length say K, the total number of subarrays of size greater than 1 = (K)*(K-1)/2.
So, the idea is to traverse the array by using two pointers to calculate subarrays with consecutive elements in a window of maximum length and then calculate all subarrays in that window using the above formula.
Below is the step-by-step algorithm:
- Take two pointers to say fast and slow, for maintaining a window of consecutive elements.
- Start traversing the array.
- If elements differ by 1 increment only the fast pointer.
- Else, calculate the length of the current window between the indexes fast and slow.
Below is the implementation of the given approach:
C++
#include <iostream>
using
namespace
std;
int
subarrayCount(
int
arr[],
int
n)
{
int
result = 0;
int
fast = 0, slow = 0;
for
(
int
i = 1; i < n; i++) {
if
(arr[i] - arr[i - 1] == 1) {
fast++;
}
else
{
int
len = fast - slow + 1;
result += len * (len - 1) / 2;
fast = i;
slow = i;
}
}
if
(fast != slow) {
int
len = fast - slow + 1;
result += len * (len - 1) / 2;
}
return
result;
}
int
main()
{
int
arr[] = { 1, 2, 3, 5, 6, 7 };
int
n =
sizeof
(arr) /
sizeof
(arr[0]);
cout << subarrayCount(arr, n);
return
0;
}
Java
class
cfg
{
static
int
subarrayCount(
int
arr[],
int
n)
{
int
result =
0
;
int
fast =
0
, slow =
0
;
for
(
int
i =
1
; i < n; i++) {
if
(arr[i] - arr[i -
1
] ==
1
) {
fast++;
}
else
{
int
len = fast - slow +
1
;
result += len * (len -
1
) /
2
;
fast = i;
slow = i;
}
}
if
(fast != slow) {
int
len = fast - slow +
1
;
result += len * (len -
1
) /
2
;
}
return
result;
}
public
static
void
main(String[] args)
{
int
arr[] = {
1
,
2
,
3
,
5
,
6
,
7
};
int
n = arr.length;
System.out.println(subarrayCount(arr, n));
}
}
Python3
def
subarrayCount(arr, n) :
result
=
0
fast, slow
=
0
,
0
for
i
in
range
(
1
, n) :
if
(arr[i]
-
arr[i
-
1
]
=
=
1
) :
fast
+
=
1
else
:
length
=
fast
-
slow
+
1
result
+
=
length
*
(length
-
1
)
/
/
2
;
fast
=
i
slow
=
i
if
(fast !
=
slow) :
length
=
fast
-
slow
+
1
result
+
=
length
*
(length
-
1
)
/
/
2
;
return
result
if
__name__
=
=
"__main__"
:
arr
=
[
1
,
2
,
3
,
5
,
6
,
7
]
n
=
len
(arr)
print
(subarrayCount(arr, n))
C#
using
System;
class
cfg
{
static
int
subarrayCount(
int
[]arr,
int
n)
{
int
result = 0;
int
fast = 0, slow = 0;
for
(
int
i = 1; i < n; i++) {
if
(arr[i] - arr[i - 1] == 1) {
fast++;
}
else
{
int
len = fast - slow + 1;
result += len * (len - 1) / 2;
fast = i;
slow = i;
}
}
if
(fast != slow) {
int
len = fast - slow + 1;
result += len * (len - 1) / 2;
}
return
result;
}
public
static
void
Main()
{
int
[]arr = { 1, 2, 3, 5, 6, 7 };
int
n = arr.Length;
Console.WriteLine(subarrayCount(arr, n));
}
}
PHP
<?php
function
subarrayCount(
$arr
,
$n
)
{
$result
= 0;
$fast
= 0;
$slow
= 0;
for
(
$i
= 1;
$i
<
$n
;
$i
++)
{
if
(
$arr
[
$i
] -
$arr
[
$i
- 1] == 1)
{
$fast
++;
}
else
{
$len
=
$fast
-
$slow
+ 1;
$result
+=
$len
* (
$len
- 1) / 2;
$fast
=
$i
;
$slow
=
$i
;
}
}
if
(
$fast
!=
$slow
)
{
$len
=
$fast
-
$slow
+ 1;
$result
+=
$len
* (
$len
- 1) / 2;
}
return
$result
;
}
$arr
=
array
(1, 2, 3, 5, 6, 7);
$n
= sizeof(
$arr
);
echo
subarrayCount(
$arr
,
$n
);
?>
Javascript
<script>
function
subarrayCount(arr , n) {
var
result = 0;
var
fast = 0, slow = 0;
for
(i = 1; i < n; i++) {
if
(arr[i] - arr[i - 1] == 1) {
fast++;
}
else
{
var
len = fast - slow + 1;
result += len * (len - 1) / 2;
fast = i;
slow = i;
}
}
if
(fast != slow) {
var
len = fast - slow + 1;
result += len * (len - 1) / 2;
}
return
result;
}
var
arr = [ 1, 2, 3, 5, 6, 7 ];
var
n = arr.length;
document.write(subarrayCount(arr, n));
</script>
Complexity Analysis:
- Time Complexity: O(N), as we are using a loop to traverse N times so the complexity for the program will be O(N).
- Auxiliary Space: O(1), as we are not using any extra space.
Source: https://www.geeksforgeeks.org/count-subarrays-with-consecutive-elements-differing-by-1/
Postar um comentário for "Number of Subarray of an Array Non Continuous"